Publications
8. Segmentation and Multi-Timepoint Tracking of 3D Cancer Organoids from Optical Coherence Tomography Images Using Deep Neural Networks. Diagnostics 2024, 14(12), 1217; Branciforti, M. Salvi, F. D’Agostino, F. Marzola, S. Cornacchia, M. Olimpia De Titta, G. Mastronuzzi , I. Meloni, M. Moschetta, N. Porciani, F. Sciscenti, A. Spertini, A. Spilla, I. Zagaria, A. J. Deloria, S.Deng, R.Haindl, G. Szakacs, A. Csiszar, M. Liu, W. Drexler, F. Molinari and K. M. Meiburger https://doi.org/10.3390/diagnostics14121217
7. Generative models for color normalization in digital pathology and dermatology: Advancing the learning paradigm. Expert Systems with Applications Volume 245 (2024), M. Salvi, F. Branciforti, F. Molinari, K. M. Meiburger https://doi.org/10.1016/j.eswa.2023.123105
6. Effective targeting of breast cancer by the inhibition of P-glycoprotein mediated removal of toxic lipid peroxidation byproducts from drug tolerant persister cells. Drug Resistance Update Volume 71, ( 2023), K. Szebenyi a,b,1, A. Füredi, E. Bajtai, S. N. Sama, A. Csiszar, B. Gombos, P. Szabo, M. Grusch, G. Szakacs https://doi.org/10.1016/j.drup.2023.101007
5. High-yield halide-assisted synthesis of metal–organic framework UiO-based nanocarriers. Nanoscale 14, 6789-6801 (2022) M. Ceballos, M. Cedrún-Morales, M. Rodríguez-Pérez, S. Funes-Hernando, J. M. Vila-Fungueiriño, Giulia Zampini, M. F. Navarro Poupard, E. Polo, P. del Pino and B. Pelaz https://doi.org/10.1039/D1NR08305H
4. Automatic Segmentation and Classification Methods Using Optical Coherence Tomography Angiography (OCTA): A Review and Handbook. Appl. Sci. 11, 9734. 2021 Meiburger, K.M., Salvi, M., Rotunno, G., Drexler, W., Liu, M. https://doi.org/10.3390/app11209734
3. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography J. Biomed. Opt. 26, 100601, 2021 Leitgeb, R., Placzek, F., Rank, E., Krainz, L., Haindl, R., Li, Q., Liu, M., Andreana, M., Unterhuber, A., Schmoll, T., Drexler, W. https://doi.org/10.1117/1.JBO.26.10.100601
2. An optical coherence photoacoustic microscopy system using a fiber optic sensor. APL Photonics 6, 096103 , 2021 Deng S., Haindl R., Zhang E., Beard P., Scheuringer E., Sturtzel C., Li Q., Deloria A., Sattmann H., Leitgeb R., Yuan Y., Schmetterer L., Pramanik M., Distel M., Drexler W., Liu M. https://doi.org/10.1063/5.0059351
1. REAP: Revealing drug tolerant persister cells in cancer using contrast enhanced optical coherence and photoacoustic tomography. J. Phys. Photonics 3, 2021 Liu, M., Deloria, A.J., Haindl, R., Li, Q., Szakacs, G., Csiszar, A., Schrittwieser, S., Müllner, P., Hainberger, R., Pelaz Garcia, B., Polo, E., del Pino, P., Penttinen, A., Guina, M., Niemi, T., Meiburger, K.M., Molinari, F., Menhard, C., Heidelin, J., Andresen, V., Geuzebroek, D., Drexler, W.,
https://doi.org/10.1088/2515-7647/abf02f
Contact
-
Medical University of Vienna,
Spitalgasse 23, 1090 Vienna,
Austria, Europe - +43 1 40400 17150
- contact@projectReap.com